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NON-LINEAR RESPONSE OF A POST-BUCKLED BEAM
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An experimental investigation of the non-linear response of a clamped}sliding post-
buckled beam subjected to a harmonic axial load is presented. Two types of resonances are
considered: fundamental and subharmonic. The data demonstrate several non-linear
phenomena including period-doubling sequence bifurcation, period-three, and chaotic
motion. In addition, the e!ect of damping on the dynamic instability of the post-buckled
beam is investigated. The regions of instability and chaotic response are shown for di!erent
damping levels. The resulting locus of instability of the periodic solutions in the
amplitude}frequency parameter space provides valuable information on the overall dynamic
behavior of the system. The qualitative changes can be observed when either the frequency or
the amplitude of excitation is varied across a bifurcation curve. The measured data are
illustrated through time histories, phase plots, Fourier spectra, and Poincare sections.
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1. INTRODUCTION

During the past two or three decades, a large amount of literature has been devoted to
post-buckling behavior analysis and dynamic instability of structures. In the "elds of
structural engineering, mechanisms and robotics, many structural elements under periodic
loads can undergo parametric resonance, which may occur over a range of forcing
frequencies. The parametrically excited vibrations of beams, plates, shells, arches, and
frames have become popular subjects of study. However, most of the previous buckling
studies have focused on the buckling or initial post-buckling behavior.

The non-linear vibrations of beams subjected to periodic excitation have been extensively
studied (see [1] and references therein). In particular, Tseng and Dugundji [2]
experimentally and analytically investigated the non-linear response and chaotic vibration
in a "xed}"xed buckled beam. Later, Moon and Holmes [3] presented a study of the most
basic model for a buckled beam and found chaotic responses. Holmes and Moon [4], and
Moon and Shaw [5] next reported chaotic behavior of a cantilever beam with magnetic
attractors at its free end. Subsequently, Moon and Holmes [6] experimentally studied
chaotic dynamics of a buckled beam forced with two frequencies. Abhyankar et al. [7]
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directly conducted numerical integration of the partial di!erential equation of a simply
supported buckled beam to investigate chaotic vibrations.

The governing equation in most of the previous work is given by the most basic model for
a buckled beam, which is Du$ng's equation with an external sinusoidal excitation.
Abou-Rayan and Nayfeh [8] investigated the non-linear response of a simply supported
buckled beam to a harmonic axial load. The physical system was modelled as a
parametrically excited Du$ng oscillator (two potential wells). They used the method of
multiple scales to determine the amplitude- and phase-modulation equations for
fundamental and subharmonic resonance, and Floquet theory to analyze the stability of the
periodic response. Moreover, analog and digital simulations were used to verify the
perturbation results. They found rich non-linear phenomena. To the author's knowledge,
the experimental investigation of the non-linear response of a post-buckled beam subjected
to a parametric excitation has not been reported previously.

In the context of non-linear oscillations, non-linear parametrically excited oscillators
have also been extensively analyzed [1, 9}20]. Chen and Langford [21] used
Liapunov}Schmidt reduction [22] and the theory of singularities to develop a C}L method
to study subharmonic bifurcation of a generally non-linear Mathieu's system. Sanchez and
Nayfeh [23] determined the instability regions of the response of a damped, softening-type
Du$ng oscillator to a parametric excitation via an algorithm based on Floquet theory.
They constructed a bifurcation diagram and found that the periodic solutions lose stability
through three types of bifurcation.

In contrast to the extensive theoretical work published on parametrically excited non-
linear systems, only limited experiments have been reported in the literature that validate
or, at least qualitatively support the theoretical results. Nayfeh et al. [24] validated
experimentally the analytically obtained natural frequencies and mode shapes for
a clamped}clamped "rst-mode buckled beam. Zavodney and Nayfeh [25] investigated the
dynamics of a cantilever beam carrying a lumped mass. They modelled the structure with
cubic geometric and inertia non-linearities. They conducted experiments and reported
results that were in general agreement with the theoretical predictions. Anderson et al. [26]
improved the model proposed by Zavodney and Nayfeh [25] and considered the e!ect of
quadratic damping on the response of the system. Their theoretical results agreed with the
experimental observations. However, many non-linear phenomena predicted to exist as
a part of the overall dynamic behavior of oscillators with parametric excitation are yet to be
demonstrated experimentally.

As a consequence, this paper will focus on an experimental study of the non-linear
response of a post-buckled beam subjected to a harmonic axial load. The system can be
modelled as a non-linear oscillator with parametric excitation. The intent here is not to
mathematically describe the complex nature of the entire non-linear system behavior, but to
develop a general understanding of the phenomena that may be applied to the many
engineering problems that fall in this category.

During the experimental work, decreasing or increasing the normal compressive force on
the sliding end will be used to vary the external frictional force, such that the coe$cients of
the linear and non-linear damping terms in the equation change. Thus, the e!ect of damping
on the dynamic instability of a post-buckled beam will be investigated.

2. EXPERIMENTAL MODEL

A physical model of the investigated beam is depicted in Figure 1. The beam was
compressed by an axial load composed of static and harmonic components. In order to



Figure 1. Geometry of the post-buckled beam.
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investigate the non-linear response of a post-buckled beam, the static component was set
above the "rst critical load for buckling. A normal force P

N
was applied to the beam at the

sliding end to control the frictional force at that location. During the experiment, decreasing
or increasing the normal compressive force P

N
on the sliding end was used to vary the

external frictional force. This sort of damping can be represented approximately by
a speed-dependent damping function [27, 28]. For a one-mode approximation, the
non-dimensional equation of motion is approximated by a degree-of-freedom non-linear
oscillator with parametric excitation:
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More details can be found in reference [29].

3. EXPERIMENTAL APPARATUS AND PROCEDURE

A schematic of the experimental set-up is shown in Figure 2. The test specimen was
a uniform beam with rectangular cross-section made of carbon steel. The dimensions of the
beam were 535mm*31mm*1)5mm. The apparatus consisted of four components: the test
specimen, the excitation system, the data acquisition system and the signal processing
system. The beam was excited along its axis at its sliding end by a PR9270 vibration exciter
driven by a power ampli"er and a sinusoidal wave synthesizer. The excitation amplitude
was held constant (as the excitation frequency was swept) by a computer-controlled
feedback loop.

Two accelerometers mounted on the middle span of the beam were used to pick up the
vibration signals proportional to the transverse displacement and velocity of the beam. The
signals were monitored by a digital oscilloscope, recorded by a cassette recorder, and sent to
an IBM PC that acquired data through a 16-bit analog-to-digital converter. A sampling
frequency of 376Hz was used and 2048 points per set were collected. The acquired data
were stored in the IBM PC and directly analyzed by a FFT algorithm.

The linear resonance frequencies of the beam were "rst determined by using band-limited
random excitation, and then the estimates were re"ned by conducting slow sine sweeps
about each frequency value. Of course, the choice of the measurement point depends on the
modes involved in the response. The measuring point should be away from nodal points of
any of the active modes. The modal testing was performed for di!erent measurement
locations along the beam. In this way, the possibility of missing a linear natural frequency
because of the measuring point being near a nodal point was reduced. The modal tests were
conducted for di!erent forcing levels to ensure that the estimated frequencies did not
depend on the vibration amplitude. The "rst two linear resonance frequencies of the beam
were experimentally obtained to be 5)7 and 24)11Hz. The modal damping coe$cients were



Figure 2. A sketch of the experimental set-up. Note: Accelerometers*1, B&K2635 charge ampli"er*2, digital
oscilloscope*3, cassette recorder*4, Poincare map pulse generator*5.
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found by performing parameter-identi"cation studies and were shown to be very small, so
the linear resonance frequencies should be very close to the linear natural frequencies. In the
next two subsections, experimental results are presented for two di!erent forcing regions:
near twice the natural frequency where the subharmonic resonance is activated, and near
the natural frequency of the "rst mode where the primary resonance is activated.

4. SUBHARMONIC RESONANCE

The frequency used in this experiment was in the region of subharmonic resonance. Four
types of experimental plots were constructed using the measured displacement and velocity.
Steady state time histories were constructed by high-speed sampling of the displacement at
a "xed sampling frequency. Phase diagrams were obtained by plotting discrete values of
velocity versus displacement. Fourier spectra of the displacement responses were obtained
directly using the fast Fourier transform algorithm. Poincare plots were generated by
plotting discrete values of velocity versus displacement.

An excitation frequency was chosen and kept constant, then the excitation amplitude was
slowly increased in small increments. At each step the actuator acceleration was held
constant by the computer-controlled feedback loop. On-line signal analyses were performed
to determine the types of vibratory response. The system exhibited periodic motion,
period-doubling bifurcations, leading to chaotic motion with a subsequent increase in
excitation amplitude.

Figure 3 shows the time history of displacement in the upper part of the "gure, and the
phase diagram and frequency spectrum in the lower part at an excitation frequency
10)36Hz. For small values of the excitation amplitude, the system can be seen to exhibit



Figure 3. Time histories, accompanying phase-plane diagrams and frequency spectra of the system response for
an excitation frequency of 10)36 Hz. Excitation amplitude (a) 0)1, (b) 0)185, (c) 0)19, (d) 0)205, and (e) 0)21A.
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periodic response and the response amplitude is also small. The frequency spectrum for the
response shows a linear single frequency motion with very low-level harmonics. Figure 3(a)
shows a period-one motion, the phase diagram strengthens this assessment as it shows
a closed curve, but its corresponding frequency spectrum shows a higher-frequency
component with small value. The amplitude of the response is small.

As the amplitude of excitation increases, both the oval form of the phase diagram and the
amplitude of the response grow. By the time the amplitude of excitation reaches 0)185A,
a period-two motion occurs as shown in Figure 3(b). The frequency spectrum now reveals
four additional frequency components above and below the excitation frequency



Figure 3. Continued.
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corresponding to the 1/2, 3/2, 2, and 5/2 frequency components. The number of closed
curves in the phase plane is doubled. As the amplitude of excitation increases slightly to
0)19A, a period-four motion is observed, as shown in Figure 3(c). The number of closed
curves in the phase plane is four-fold. The frequency spectrum shows further sidebands at
the 1/4, 3/4, 5/4, and 7/4 components. As the amplitude is increased further, the motion
leads to vibrations as shown in Figure 3(d). However, eight-fold closed curves cannot be
observed. The reason is that the interval for higher period-doubling motion is very small,
and usually cannot be detected when performing mechanical model experiments. A slight
broadening of the sideband base is observed in Figure 3(d), which shows some features of
chaotic motion. For an amplitude of excitation increase to 0)21A, the response is shown in



Figure 3. Continued

Figure 4. Poincare map for an excitation frequency of 11)44 Hz, and an excitation amplitude of 0)21A.
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Figure 3(e). The unrepeated time series, the strange attractor formed by the Poincare plot
and the broadband spectral content of the corresponding Fourier spectrum all suggest that
the motion is chaotic [30].

It is noted that the normal bifurcation pattern, a sequence of period-doubling
bifurcations leading to chaos (as illustrated in Figure 3), has been commonly observed in the
majority of over 20 tests conducted using di!erent system parameters and excitation
frequencies, under both the excitation amplitude sweep and excitation frequency sweep.

Figure 4 shows a Poincare section of the trajectory, which is constructed by sampling the
motion at the period of the excitation frequency. The "gure shows the steady experimental
result for 3828 periods after the transient response fully decays. It is clearly a strange attractor.

5. PRIMARY RESONANCE

The normal pattern of a sequence of period-doubling bifurcations leading to chaos was
observed near the subharmonic resonance. In this section, the experimental observation of



Figure 5. Time histories, accompanying phase-plane diagrams and frequency spectra of the system response for
an excitation frequency of 6)6 Hz. Excitation amplitude (a) 877, (b) 980, (c) 1069, (d) 1186, (e) 1209, and (f) 1252 mV.
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a window of period-three motion and a reverse period-doubling bifurcation is discussed for an
excitation frequency near the primary resonance of the "rst natural frequency.

Figure 5 shows the partial response of the beam excited at a frequency of 6)6Hz, as
a function of a gradual variation in the excitation amplitude. The responses of the system
corresponding to an excitation amplitude below 877mV are not given for the sake of
brevity. Figures 5(a) and 5(b) show chaotic motions of the system at the excitation
amplitude 877 and 980mV, respectively. For an excitation amplitude increase to 1069 mV,
the response is shown in Figure 5(c). It is not clear from the phase diagram and the
frequency spectrum if the response is multi-periodic or chaotic. By the time the amplitude of



Figure 5. Continued.
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excitation reaches 1186mV, the period-three motion is detected, as shown in Figure 5(d) for
which the frequency spectrum indicates many harmonic components. As the amplitude of
excitation increases further, chaotic motion is observed again. Thus, it can be concluded
that there exists a window of period-three motion between chaotic motions. When the
amplitude of excitation is increased to 1252mV (Figure 5(f)), a period-four motion is
detected.

Figure 6 shows a partial sequence of reverse period-doubling bifurcations coming out of
chaos as the excitation amplitude increases. Figure 6(a) indicates chaotic motion. When the
amplitude of excitation exceeds 1020mV, chaotic motion does not exist anymore. Instead,



Figure 5. Continued.
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period-six motion is observed, corresponding to an amplitude of excitation of 1023mV (as
shown in Figure 6(b)). As the amplitude of excitation increases further, the response of the
beam does not follow the normal bifurcation pattern. Instead, a period-demultiplying
sequence of bifurcations (from 8 to 4) occurs and is shown in Figures 6c}e. Unfortunately,
period-two and period-one motions were not detected since the exciter could not provide
enough output to explore such a response.

Near the primary resonance, chaotic motion is usually observed at small amplitudes of
excitation. Figure 7 shows a typical Poincare map of chaotic motion.



Figure 6. Time histories, accompanying phase-plane diagrams and frequency spectra of the system response for
an excitation frequency of 5)5Hz. Excitation amplitude (a) 1013, (b) 1023, (c) 1035, (d) 1082, (e) 1108, and (f)
1124mV.
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6. EFFECT OF DAMPING ON DYNAMIC INSTABILITY

Parametric resonance may occur over a range of forcing frequencies. Therefore,
prediction of the regions of instability in the parameter space becomes critical. Figure
8 shows the experimentally obtained bifurcation diagram on the excitation
amplitude}frequency space near a subharmonic resonance. The upper curve represents the
boundary of appearance of chaotic motion, whereas the lower curve represents the
boundary of occurrence of period-doubling bifurcations.



Figure 6. Continued.
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As is well known, chaotic motion is very sensitive to initial conditions. The procedure for
obtaining the data represented by the curves in Figure 8 was as follows. The experiment was
started by selecting an initial excitation frequency and "xing it; then the excitation
amplitude was slowly increased in small increments. At each step the excitation output was
held constant by the computer-controlled feedback loop. Su$cient time was allowed to
elapse so that steady state motion was achieved. The Poincare sections, frequency spectra
and phase diagrams were used to ascertain if a response had achieved steady state.

When period-two motion occurred, the excitation amplitude was noted. This threshold
value was used to construct the lower curve in Figure 8. As the amplitude of excitation



Figure 6. Continued.
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increased further, chaotic motion appeared. The critical value for the occurrence of chaos
was also noted. Thus, two critical values for this excitation frequency were obtained. The
excitation amplitude was then reduced to zero after which the excitation frequency was
changed in small increments to another value, and the above procedure repeated. Care was
taken to ensure that the small-amplitude increments were properly selected so that a critical
value was not bypassed.

The resulting locus of instability of the periodic solutions in the amplitude}frequency
parameter space provides valuable information on the overall dynamic behaviour of the
system. Qualitative changes can be observed when either the frequency or the amplitude of



Figure 7. Poincare map for an excitation frequency of 4)5Hz, and an excitation amplitude of 0.21 A.

Figure 8. Bifurcation diagram for a normal compressive force 0)5 N.

Figure 9. Bifurcation diagram for a normal compressive force 6N.
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excitation is varied across a bifurcation curve. For a "xed frequency, when the excitation
level was increased from a very low level, the beam did not respond and remained
dynamically stable even with a given manual perturbation. As the amplitude of excitation
increased, periodic motion took place across the lower curve, period-doubling bifurcation
took place and a stable period-two attractor was obtained. In the narrow region between
the two curves a sequence of period-doubling bifurcations is observed. After a few period-
multiplications take place a broadband frequency content appears in the FFT across the
upper curve, indicating the presence of a chaotic attractor.

If the normal compressive force P
N

at the sliding end of the beam was increased, the
frictional force increased. Thus, the e!ects of damping on the dynamic instability were able
to be investigated. Figure 9 shows the bifurcation diagram under the larger compressive
force P

N
. Comparing Figures 8 and 9, one can conclude that the same qualitative results are
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obtained for high- as for low-damping levels. The major di!erence is that the width of the
chaotic band in the amplitude of excitation}frequency plane for the low-damping case is
much narrower than its counterpart for higher damping. Another di!erence is that the
higher damping case requires a higher amplitude of excitation to show the period-doubling
bifurcations leading to chaos.

7. CONCLUSIONS

The non-linear response of a post-buckled beam subject to a parametric excitation was
experimentally investigated. Period-doubling bifurcation, period-demultiplying bifurcation,
period-three motion and chaotic motions were observed. Increasing and decreasing the
normal compressive force at the sliding end of the beam could change the damping of
system, allowing the e!ect of damping on the dynamic stability to be investigated. The
experimental bifurcation diagrams were constructed in a similar way to the numerical ones;
that is, by varying one of the parameters while the others were kept constant. For
su$ciently small values of excitation, the system simply oscillated about the near static
equilibrium point and the corresponding amplitudes of oscillation were relatively small. As
the amplitude of excitation was increased, the system experienced large-amplitude
oscillations and underwent period-doubling bifurcation leading to chaos.
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